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ABSTRACT 

This work presents the development of an algorithm to incorporate 
measurements from multiple antennas to improve the relative position solution 
between convoying vehicles provided by Global Positioning System (GPS) 
measurements.  The technique presented, incorporates measurements from multiple 
antennas with a known fixed-baseline between a base antenna and auxiliary 
antenna on a base vehicle, and a rover antenna on a rover vehicle.  The additional 
information provided by the fixed-baseline distance is used to provide an additional 
measurement with low uncertainty for improved integer ambiguity resolution 
between the base and auxiliary receiver, which in turn, provides additional 
measurements for determining the integer ambiguity difference between the base 
and rover receivers for the computation of a high-precision relative position vector 
(HPRPV).       

 
INTRODUCTION 

Autonomous vehicle convoying requires precise 
path following independent of the ability to 
maintain a constant line-of-sight between vehicles.  
Common technologies used for path generation, 
namely cameras and LiDAR, must be in view the 
of the preceding vehicle and can be susceptible to 
debris like dust or smoke.  Relative position 
determination provided by GPS techniques do not 
depend on maintaining a constant line-of-sight with 

the leading vehicle and are negligibly affected by 
fog, dust, and smoke. GPS carrier phase 
observables are widely used to provide precise 
relative position solutions in kinematic 
applications.  Changes in the carrier signal phase 
from epoch to epoch can be measured with an 
accuracy of 2-4 mm; however, the number of whole 
carrier cycles in the propagation path between the 
antenna and the satellite is ambiguous.  
Determining the number of whole carrier cycles in 
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the propagation path is known as carrier phase 
ambiguity resolution and is crucial for applications 
requiring centimeter-level positioning.  In real-time 
applications, determination of the carrier phase 
integer ambiguities on-the-fly is required.  A 
common technique applied to utilize the carrier 
phase measurement in real-time is differential GPS 
(DGPS).  This approach removes error sources 
from the atmosphere, clocks, and ephemeris to 
more easily determine the bias in the measurement 
as a result of the integer ambiguities.  Real-time 
kinematic positioning (RTK) is an application of 
DGPS that uses a static receiver, known as a base 
station, with a well surveyed global position, and a 
dynamic receiver, commonly known as a rover, that 
serve as the two receivers for differencing 
measurements.  In this work, this concept is 
extended to the relative position between two 
vehicles without the need for a static base station, 
known as dynamic base real-time kinematic 
(DRTK) positioning. Improvements in the 
accuracy of the relative position solution and a 
reduction in the time required to fix ambiguities to 
a correct integer value (time-to-fix) by adding a 
measurement of a known fixed-baseline between 
antennas on a vehicle are explored.  In this work, 
the coordinate system used is Cartesian earth-
centered, earth-fixed (ECEF).   

 
DRTK Overview 

  The DRTK method does not require a static base 
station to provide centimeter-level precision.  This 
is advantageous for convoying where base stations 
are not available and where an available base 
station will lose efficacy after distances become too 
great for benefit (> 2 km) [3]. The traditional 
DRTK algorithm is a multi-step process that begins 
with the combination of pseudorange and carrier 
phase measurements from multiple receivers, as 
described in Equation (3-4), in a discrete, linear 
Kalman filter to estimate the relative ambiguities 
(float solution) between the receivers.  Next, the 
floating-point estimates are fixed to integer values, 
and finally, the unambiguous carrier phase 

measurements are used to compute a high-precision 
relative position vector (HPRPV) solution within a 
least-squares routine.   

 
Measurement Models 

Equation (1) is the measurement model of the 
pseudorange measurement.  This measurement is 
effectively a measurement of the signal propagation 
time from satellite to receiver. This time interval is 
scaled by the vacuous speed of light to give 
distance in units of meters.  The pseudorange 
observation between a user and satellite i can be 
related to the user position and clock states shown 
below. 

 
(1) 

 
 ri is the satellite position at transmit time, ru is the 

receiver position at receive time, bu is the bias in the 
receiver clock in seconds, c is the speed of light 
(m/s), and h is the combined error/noise attributed 
to atmospheric delays, satellite ephemeris 
mismodeling, and receiver noise [1]. Equation (2) 
is the carrier phase measurement model.  Once the 
receiver locks on to a particular satellite, it keeps a 
running cycle count based on the Doppler 
frequency shift present on the carrier signal’s 
respective frequency (L1, L2, etc.).  The carrier 
measurement is more than one-thousand times less 
noisy than the pseudorange measurement [2]. The 
carrier phase observation between a user and 
satellite i can be related to the user position, clock 
states, and integer ambiguity N as shown below. 

 
(2) 

 
The equation is in units of meters after scaling the 

measurement by the wavelength l of the carrier 
signal, whether that be L1, L2, L5 etc. The benefit 
of the carrier phase measurement is the accuracy 
with which it can be measured; however, it is an 
ambiguous measurement and the bias from the 
integer ambiguities must be determined.  A high-
quality receiver is capable of measuring with an 

𝜌 = |𝒓𝒊 − 𝒓𝒖| + c ∗ b, + h 

𝜑 = |𝒓𝒊 − 𝒓𝒖| + 𝑐 ∗ 𝑏, + 𝜆𝑁 + h 



Proceedings of the 2018 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS) 

IMPROVED RELATIVE POSITIONING FOR PATH FOLLOWING IN AUTONOMOUS CONVOYS, Tabb, et al. 
UNCLASSIFIED 
 

Page 3 of 10 

accuracy of 1-2% of the wavelength [2].  The 
Coarse Acquisition (C/A) code from which the 
pseudorange measurement is determined, has a 
wavelength of roughly 300 meters and the carrier 
waves from which the carrier phase measurements 
are determined, have wavelengths of 19 
centimeters and 24 centimeters for the L1 and L2 
carrier frequencies, respectively [2].  After 
accounting for noise and resolution error, the 1s 
values for the pseudorange measurement and 
carrier phase measurement are 1.5m and a couple 
of centimeters, respectively [2]. 

 
DRTK Algorithm 
The DRTK algorithm exploits the accuracy of the 

carrier phase measurement to determine a relative 
position vector between two antennas.  As in other 
DGPS techniques, the measurements between 
receivers are differenced to remove common 
atmospheric errors between the receivers, assuming 
the baseline distance is less than 2 km. A Kalman 
filter, described in Figure 1 is used to iteratively 
estimate the ambiguities along with the geometry 
states and the clock bias.  The pseudorange and 
carrier phase measurements from the rover and 
base are combined to perform the measurement 
update of the Kalman filter.  The Kalman filter 
mean and covariance of the carrier ambiguities are 
then used to intelligently round the float estimate of 
the integer values using an algorithm called the 
Least-squares Ambiguity Decorrelation 
Adjustment (LAMBDA) method.  Finally, the high 
precision RPV is calculated using the fixed integer 
value ambiguities and the carrier phase 
measurements from the two receivers [3]. The 
DRTK measurement models and state vector with 
D representing single-differenced measurements 
are below. 
 

(3) 
 

(4) 
 

(5) 

The state vector includes the relative geometry 
states, xr,b, yr,b, zr,b, the relative clock bias, br,b, and 
the relative integer ambiguity states, 𝑁2,45 ∙	∙ 		𝑁2,48 , 
where the superscript m represents the number of 
measurements from tracked satellites. Velocity  

 
 
 
 
 

 
 
Figure 1: Kalman filtering routine. 
 
the velocity states for xr,b, yr,b, and zr,b are also 
estimated but are excluded in Equation (5) for 
brevity. In Equation (3-5), the subscripts 𝑟, 𝑏 
denote that the parameter is the difference between 
the rover and base values, the superscript m is equal 
to the number of satellites observed, 𝑟 is the true 
range to satellite.  The noise values hr,b represent 
the noise characteristics of the single-differenced 
pseudorange and carrier measurements. 

The observation matrix, Equation (6), consists of 
the unit vectors from satellite to receiver, and given 
that the baseline distance is sufficiently small, the 
unit vector a from the base to the satellites is 
sufficient to use in the model for both the base and 
rover.  The dimensions of H are n x m, where n is 
equal to the number of states estimated.  Also, I is 
an identity matrix with dimension equal to m x m. 
 

(6) 
 

The measurement vector is given in Equation (7) 
and consists of single-differenced pseudorange and 
carrier measurements between the rover and base 
receiver. 

 
(7) 

 
The state covariance matrix P is a diagonal matrix 

initialized with the expected variance of the initial 
estimates of the relative geometry and clock states 

𝛥𝜌 = 𝑟2,4 + 𝑐 ∗ 𝑏2,4 + 𝜂<,=	 

𝛥𝜑 = 𝑟2,4 + 𝑐 ∗ 𝑏2,4 + 𝜆𝑁2,4 + 𝜂2,4  

𝑋 =	 ?𝑥2,4 𝑦2,4 𝑧2,4 𝑐𝑏2,4 𝑁2,45 ∙ ∙ 𝑁2,48 C
D
 

 

 

𝑯 = 	 F
𝑎HI 𝑎J	I 𝑎KI −1 08H8
𝑎HI 𝑎J	I 𝑎KI −1 𝜆𝐼8H8

O 

𝑧 = 	 P𝛥𝜌24𝛥𝜑24
Q 
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while the integer ambiguity states are set to an 
experimentally determined value of 0.5 [4].  The 
process noise covariance matrix Q is given below 
in Equation (8). 
 

  
 

(8) 
 
 
 
Qx, Qy, and Qz are determined by the expected 

dynamics of the receivers and are treated as tunable 
parameters in this work.  The integer ambiguity 
values, once the receiver maintains lock on the 
signal, are known to be constant with high 
certainty; however, to prevent the filter from 
disregarding new measurement information in the 
measurement update step, QN is given a fictitious 
process noise value of 1x10-6.  The clock term, Qcb, 
is determined by the clock model for the receiver 
[5]. Additionally, the clock term is multiplied by 2 
to account for the two respective clocks of the 
receivers. 

The measurement noise covariance matrix R is 
given by the error model of the Delay Lock Loop 
(DLL) and Phase Lock Loop (PLL) of the 
receivers. The error models are given below. 

 
(9)  

 
 

(10) 
 
 

(11) 
 
 

(12) 
 
 
The parameters used in this work for the 

measurement error models are provided in Table 1.  
The carrier-to-noise-density ratio, 𝑐/𝑛T, is 

provided by the receiver and varies throughout the 
measurement period.  The minimum ratio used in 
this work for acquisition is nearly 34 db-Hz and for 
tracking, 31 db-Hz [12]. 

 
Table 1: Pseudorange and Carrier Phase variance parameters [3]. 
Parameter Description Value 
𝜎VWXY
Z  Atmospheric code delay 5.22 (m) 
𝜆[ Code chip width 293.05 (m) 
d Correlator spacing 0.5 (chips) 
Bnr Code loop noise bandwidth 2 (Hz) 
T Prediction integration time 2 (ms) 
𝜎\WXY
Z  Atmospheric carrier delay 0.03 (m) 
𝜆] Carrier wavelength L1, L2 (m) 
𝐵_\ Carrier loop noise bandwidth 18 (Hz) 
  
Given this model, the measurement noise 

covariance matrix R is given in Equation (13). 
 

(13) 
 
 
Equation (13) gives R for one satellite as a 

demonstration; in practice it will take on the 
dimension of two times the number of visible 
satellites on each frequency.   

The next stage of RPV estimation is to fix the 
floating-point ambiguity estimates to integer 
values.  The Kalman filter provides estimates of the 
single differenced integer ambiguities and a 
covariance matrix to describe the uncertainty in the 
estimates.  Before implementing the LAMBDA 
method, the single differenced estimates are 
transformed into double differenced estimates to 
remove residual receiver clock errors that remain 
after single differencing.  The double difference 
transformation is linear and performed by 
differencing all of the single-differenced estimates 
by one single-differenced estimate related to the 
satellite most directly overhead, because its signal 
is assumed to be the least affected by atmospheric 
delays [9].  In short, all estimates are differenced by 
one common satellite. Additionally, the covariance 
matrix P must be transformed. For example, this 

𝑄 =

⎣
⎢
⎢
⎢
⎡
𝑄H 0ZHZ 0ZHZ 0ZHZ 0ZH8
0ZHZ 𝑄J 0ZHZ 0ZHZ 0ZH8
0ZHZ 0ZHZ 𝑄K 0ZHZ 0ZH8
0ZHZ 0ZHZ 0ZHZ 2𝑄[4 0ZH8
08HZ 08HZ 08HZ 08HZ 𝑄e ⎦

⎥
⎥
⎥
⎤

 

 

𝜎VZ = 	𝜎VWXY
Z +	𝜎i]]Z  

𝜎i]] = 	𝜆[
j4𝑑

Z𝐵_m(2(1 − 𝑑) +
4𝑑

𝑇𝑐/𝑛T
)

𝑐/𝑛T
 

𝜎\Z = 	𝜎\WXY
Z +	𝜎q]]Z  

 

𝜎q]] =
𝜆]
2𝜋

j𝐵_\(1 +
1

𝑇𝑐/𝑛T
)

𝑐/𝑛T
 

 

𝑅 = 	 F
𝜎2tuu
Z + 𝜎4tuu

Z 0
0 𝜎2vuu

Z + 𝜎4vuu
Z O 
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transformation is performed on 5 satellites as 
described in Equations (14-16). 

 
 

(14) 
 
 
 

(15) 
 
 

(16) 
 

After the integer values are fixed with the 
LAMBDA method, a HPRPV is calculated using 
least-squares as shown in Equation (17). 

 
(17) 

 
Where ∆𝑎 represents the transformed unit vector 

from satellite to receiver to agree with the now 
double-differenced geometry, ∆∇𝜑 represents the 
double-differenced carrier measurements between 
base and rover, and ∆∇𝑁 represents the double- 
differenced integer estimates [3]. 

Another common technique decouples the clock 
bias and position states from the model to 
exclusively estimate the integer ambiguity states.  It 
will not be covered here, but can be found in [7,8]. 
 
Multi-Antenna DRTK Overview 
  Adding the measurement of the known, fixed-
baseline between antennas on a single vehicle 
significantly reduces the time-to-fix and increases 
the accuracy of the HPRPV, because the initial float 
solution estimates are more accurate.  This method 
provides the possibility of obtaining nearly the 
same performance as a dual-frequency receiver in 
the conventional hardware configuration and 

algorithm with a low-cost alternative single-
frequency receiver, simply because one may double  
the measurements without estimating additional 
states.  

Convoy vehicles can be fitted with multiple 
antennas rigidly fixed to the frame of the vehicle.  
This work utilizes this configuration to provide a 
known baseline to resolve integer ambiguities 
between antennas on the same vehicle to provide 
more efficient carrier ambiguity resolution between 
convoy vehicles for computation of the HPRPV.  

 
Fixed-Baseline DRTK Algorithm 
The first step in using the known baseline 

information is to determine the relative integer 
ambiguity difference between the base and 
auxiliary receiver.  After this solution converges 
and the integer ambiguities are fixed, one may use 
this information in a second Kalman filter to 
determine the distance between the base to the 
rover receiver.  This implementation violates the 
white noise assumption of the Kalman filter 
because the estimation errors from the first filter are 
time-correlated.  This is commonly known as the 
cascaded Kalman filters problem [5].  Treatments 
for this subject are covered in [5,10].  In this work, 
this violation is ignored in the second filter 
accepting the auxiliary measurements with colored 
noise, and the noise is treated as white; however, 
the auxiliary measurements are noisier as a result of 
adding a noisy measurement to another noisy 
measurement. This increase in noise is accounted 
for in the measurement noise covariance matrix.    

The known baseline information is utilized by 
adding the low-uncertainty measurement of the 
baseline to the measurement vector.  This 
constrains the low-precision baseline estimates to a 
circle with radius equal to the baseline magnitude 
(see Figure 2) [3].  The following row must be 
appended to the observation matrix. 

 
(18) 

 

𝐴z{ = |
1 −1 0 0 0
0 −1 1 0 0
0 −1 0 1 0
0 −1 0 0 1

} 

𝑁~zz = 𝐴z{ 𝑁~{z 

𝑃ezz = 𝐴z{ 𝑃e��𝐴z
{ D 

𝑟2,4 = (∆�⃗�D∆�⃗�)�5∆�⃗�D(∆∇𝜑2,4 − 	𝜆∆∇𝑁2,4	) 

𝐻 = 	 P
𝑥2,4	
𝜌4

	
𝑦2,4	
𝜌4

𝑧2,4	
𝜌4
			0			05H8	Q 	 
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The baseline rb and observation matrix are 
calculated with the current best estimates of the 
states as shown in Equation (19). 

 
(19) 

 

 
 

Figure 2: Constrained baseline estimates. 
 

Additionally, the measurement covariance matrix 
R must be altered to include the certainty with 
which the fixed baseline was measured.  If 
measured with RTK, this value is 0.01 cm2 [3]. 
After the integer ambiguities between the auxiliary 
receiver and base receiver are resolved, this 
information can be passed to the second Kalman 
filter which takes advantage of the known geometry 
to provide additional measurements without the 
burden of estimating additional states [6].   

 
Multi-Antenna DRTK Algorithm 
The additional measurements provided by the 

known-baseline information are derived using 
simple vector addition as described in Figure 3.  By 
vector addition, the new measurement vector z is 
derived below in Equation (20-23). 

 
(20) 

 
(21) 

 
(22) 

 
 

(23) 
 

 
 

 
Figure 3: Description of receiver geometry  

  
In this work, the estimates of the baseline integer 

ambiguity states are passed to the second filter in a 
cascaded architecture before integer fixing to begin 
estimation earlier.    
 
Results 

 Pseudorange and carrier phase measurements 
were simulated in MATLAB with noise 
characteristics simulated as given in [1].  Monte-
Carlo simulations were performed to validate the 
concept.  The algorithms were all developed in 
MATLAB and the simulations were carried out 
with a sample frequency of 10 Hz.  Additionally, 
the simulations were performed using L1 and L2 
frequencies to simulate a dual-frequency receiver, 
and L1 alone to simulate a low-cost receiver. 
Statistics from the simulations were generated and 
comparisons were drawn based on time-to-fix to 
the correct integer, and error in the estimate. A 
display of the mechanics of the filter are shown in 
Figure 4 as the estimates converge to the correct 
value on four satellites selected at random for this 
demonstrative figure. All integer ambiguities were 

𝜌4 = �𝑥2,4Z + 𝑦2,4	Z + 𝑧2,4	Z  

𝜑Z� = 𝜑5� − 𝜑5Z  

φ5�� = φZ� + r5Z + 	λN5Z + c ∗ b5Z 
= r5� + λN5� + c ∗ b5�					 

ρ5�� = ρZ� + r5Z + c ∗ b5Z = r5� + c ∗ b5� 

𝑧 = |

𝜌5�
𝜌5��
𝜑5�]5
𝜑5��

}	 
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randomly generated. Next, raw GPS data was 
provided by TARDEC from a recent trial with 
convoying vehicles equipped with the appropriate 
fixed-baseline hardware configuration.  This data 
was used to validate the algorithm’s performance 
and to confirm the veracity of the claims.  The data 
provided was sampled at 5 Hz and contained dual 
frequency measurements.  Global RTK solutions 
were used for comparison. 
 

Static Simulated Data Simulation 
 

 
 

Figure 4: Integer ambiguity estimation mechanics. 
 
Figure 4 shows the estimates converge to the 

correct value but converge slower than the statistics 
given in Table 2.  This is because these values were 
taken directly from the Kalman filter float solutions 
before the LAMBDA method decorrelates the 
integer estimates and uses the error covariance to 
determine the correct integer.  

 
Table 2: Performance statistics. 

Multi-Antenna Conventional 
𝜇 = 1.75	𝑠 𝜇 = 2.40	𝑠 

 
𝑥� = 1.25	𝑠 𝑥� = 3.30	𝑠 

𝜎 = 1.40	𝑠 𝜎 = 2.60	𝑠 
 

  

The multi-antenna approach provides a faster 
time-to-fix and is more closely distributed to the 
mean than the conventional algorithm with this 
simulated data. 

Figure 5 and Figure 6 compare the solutions in 
the RPV estimate provided by the LAMBDA 
method over the time of one simulation with the 
same randomly generated data.  The LAMBDA 
method will provide integer estimates, regardless if 
they are correct, and a least-squares solution of the 
RPV can be calculated.  It can be seen that the 
multi-antenna algorithm converges faster to the 
 
 

  
 
 
 
 
 
 

 
 
 
 
 
Figure 5: Multi-Antenna DRTK integer ambiguity 
estimation. 
 

 
Figure 6: Conventional DRTK integer ambiguity estimation. 

 
correct value, which in practice is determined by a 
statistical threshold known as the ratio test that 
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must be met.  A common threshold is 3 [3].  In this 
simulation, the ratio test was not used for validation 
because the correct integers were known, so the 
performance of the filter could be directly 
observed. Additionally, the initial estimates of the 
RPV leading to convergence are better in the multi-
antenna case.  It is important to note that regardless 
of the method used, DRTK provides centimeter-
level precision when fixed integers are available 
and even before, the estimates have sub-meter 
accuracy. 
 

Dynamic Experimental Data Simulation 
The results from the simulated data were 

confirmed when the algorithm exhibited the same 
behavior with experimental data.  Table 3 lists the 
results of the simulations with 10 minutes of 
dynamic data.  These statistics include the total 
performance of the algorithm including periods 
when fixed integers were available (HPRPV) and 
when they weren’t (float solution).  The error was 
determined by comparing the solutions from the 
DRTK algorithms to RTK solutions provided by 
NovAtel’s Waypointâ post-processing software. 

 
Table 3: Total error in RPV estimation over 10 minutes 

including float solutions and fixed solutions. 
Multi-Antenna Error Conventional Error 

𝜇 = 	1.83	𝑐𝑚 𝜇 = 4.72	𝑐𝑚 
 

𝜎 = 7.97	𝑐𝑚 𝜎 = 9.16	𝑐𝑚 
 

 
The multi-antenna algorithm improved the time-to-
fix by a factor of nearly 2.  In this simulation the 
times-to-fix were 8.8 seconds and 15.6 seconds for 
the multi-antenna and conventional algorithms, 
respectively.  It is important to note that the time-
to-fix is heavily influenced by the value of the ratio 
used in the ratio test.  A stricter ratio, higher in 
number, will increase the time-to-fix.  In this 
simulation, the time-to-fix refers rather to the 
amount of time the filter takes to converge on the 
correct integer values that are validated by the error 
in the RPV estimate compared to the RTK truth 

solution.  The time-to-fix based solely on the ratio 
test was comparable for both the conventional and 
multi-antenna algorithm in this experiment.   

 
Figure 7: Path taken by vehicles in dynamic experimental      
data simulation. 
 
Figure 8 depicts the convergence and error 
behavior of the multi-antenna and conventional 
algorithm.  In this simulation, the LAMBDA 
method is used to continuously estimate the 
integers rather than fixing and holding the values 
after the ratio test is passed.  For more on the ratio 
test, see [11].  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8: Total error comparison between the algorithms. 
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The float solutions are also improved upon with the 
multi-antenna algorithm. The error statistics are 
provided in Table 4. 

 
Table 4: Float solution performance statistics. 
Multi-Antenna Error Conventional Error 

𝜇 = 37.01𝑐𝑚 𝜇 = 55.06	𝑐𝑚 
 

𝜎 = 8.72	𝑐𝑚 𝜎 = 8.24	𝑐𝑚 
 

 
Conclusions 
  In this work, pseudorange and carrier phase GPS 
measurements were used to determine the relative 
positions of antennas, thus vehicles, in an 
autonomous convoy.  The conventional DRTK 
algorithm was described and then compared to a 
new method incorporating measurements from a 
third receiver.  The new method, multi-antenna 
DRTK, of incorporating measurements from an 
auxiliary receiver was developed and shown to 
perform more effectively based on the parameters 
of time-to-fix and overall error in solution.  
Additionally, the algorithm can be utilized in a low-
cost implementation of three single-frequency 
receivers to provide comparable performance to the 
hardware configuration of two dual-frequency 
receivers. 
 
Future Work 
  With the addition of a second antenna with known 
geometry fixed to a vehicle, attitude information 
may be calculated using GPS measurements. To 
improve the solution provided by stand-alone GPS, 
more measurements from radar, cameras, and an 
IMU can be fused in a Kalman filter to provide a 
more robust solution that is less susceptible to 
interference, multi-path effects, and signal loss.  
Additionally, this concept can be extended to an 
array of four antennas with known baselines of two 
pairs of antennas rigidly fixed to two separate 
convoying vehicles.  
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